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Abstract. A method for preparing singie-phase ingots of GeTe-rich solid solutions
(z € 0.20) in the system (GeTe)_.(AgBiTR,), is developed. The temperature
dependence (77 to = 900 K) of the thermoelectric power is measured. The curves for
GeTe and GeTe-rich solid solutions are of similar shape. Using conventional transport
theory, the lattice and electronic contributions to this effect are obtained. To explain the
behaviour of diffusion and phonon-drag terms, the metallic expressions for both are used.
On the basis of band-edge models of Gele and AgBiTez, the non-parabolic two-band
Kane model of I¥-VI compounds, and separate values of the electronic parts of the
thermoeleciric power, information about the Fermi energy and degree of degeneracy is
obtained. A qualitative interpretation of the temperature dependence of S, is made.

1. Introduction

It is well known that Gee and GeTe-rich solid solutions (5s) are strongly degenerate
narrow-band-gap semiconductors of p-type conductivity due to the presence of
vacancies in the cation sublattice [1]. According to the T—z projection of the Ge-Te
phase diagram, the region of the compound

(Ge\_;V;)Te (1)

(V¢ are the initial ‘empty cation sites’, i.e. vacancies, and § is their number) is
displaced to the Te-rich side. The high-temperature crystal lattice of GeTe is cubic
{NaCl type), with a space group of symmetry OF, but at low temperatures it is
rhombohedral, C3; (at Te content less than 50.4 at.%), or orthorhombic, D (at Te
content more than 50.4 at.% and p, > 1.1 x 107 m~%) [2].

According to the physicochemical investigation of the system (GeTe);_,
(AgBiTe,),., a continuous series of 55 exists above 773 K, but at lower temperatures
the solubility is limited owing to decomposition of AgBiTe, and ss based on it. The
GeTe-rich ss undergoes a reversible Of—Cj, phase transition. The phase transition
temperature decreases with increasing x from about 700 K for Ge-rich Gele 10 room
temperature for 38 with x about 0.23 [3,4]. The transport coefficients for this system
are investigated for 0 € « € 1 at 300 K (bulk samples) [5] and in the temperature
interval from 77 to 700 K (hot-pressed samples of (GeTe),_,,(AgBile,),, with
z = 0.05, 0.10, 0.15) [6]. The temperature dependence of the thermoelectric power
S of (Gele),_,(AgBiTe,), ss for bulk samples of the alloys with = = 0.05, 0.10, 0.15
and 0.20 was measured and discussed earlier [7].

0953-8984/93/010067+18307.50 © 1993 IQP Publishing Ltd 67
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The aim of the present paper is to analyse the temperature dependence of the
thermoelectric power, measured from 77 to ~ 900 K, and to obtain information
about the Fermi energy (F) and degree of degeneracy of different compositions of
GeTe-rich (Gee),_ . (AgBiTe,), ss.

2. Experimental procedure

The alloys were synthesized from elements with purity 99.995% (Ag, Bi, Te) and
50 Q om Ge by melting in ampoules sealed under high (1.3 x 1074 Pa) vacuum.
The ampoules were cleaned, dried and outgased beforehand. The temperature of the
furnace was above 1273 K and the reaction continued for about 48 b, the ampoules
being continuously vibrated to ensure a thorough mixing of the melt. At the end of
the synthesis the ampoules were slowly cooled to a temperature about 100 K below
the solidus line of the phase diagram and then they were rapidly cooled in ice-water
and annealed at 773 K for 1000 h to reach the equilibrium state.

The thermoelectric power was measured using the method of Steenbeck and
Baranskii [8] with an accuracy of about 5%. The temperature difference in the
sample was about 5 K. The absolute values of the thermoelectric power were found
using the data given in [9].

The temperature dependences of the ss transport coefficients are the result of
crystal Jattice changes with temperature, the corresponding band-edge changes, and
the kind and the degree of degeneracy of the carriers. Because of this, some
theoretical considerations must be given first for a better explanation of the observed
curves.

3. Theoretical background

3.1. Crystal structure

It is well known that among the IV-VI compounds the tellurides (GeTe and Sn'Te) and
the alloy systems based on them (Pb,_,Sn_Te, Pb,_,Ge, T, Sn;_,Ge,Te) represent
a unique class of displacive ferroelectric semiconductors with a narrow energy gap
and a structural phase transition from high-temperature cubic O] (NaCl type) to
rhombohedral C3, (As like) structure at a critical temperature (T,) [10,11].

The (GeTe);__(AgBiTe,), ss must be considered as pseudo IV-VI compounds.
This was established by investigation of the crystal structure and defects of GeTe—
Ag,Te-Bi,Tey s [12-14]. The exact formula of the (GeTe),_,(AgBiTe,). $s for its
real composition may be written as [10]

(Gen 214228z /(142 Blz 142y )1-6 V5| T (2)

and refers to the non-stoichiometric nature of the basic compound GeTe. The number
of ionized cation vacancies V*© is & (see (1)).

As for the IV-VI compounds the rhombohedral distortion of the
(GeTe),_.(AgBiTe,), ss below T, can be described in terms of three components
(see figure 1), as follows:
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(i) The optical distortion is a spontaneous static relative shift u in parts of the
lattice constant (g) of the two cubic sublattices along the (111} direction, which
becomes the rhombohedral ¢ axis. If we denote the atomic coordinates as (g, q, g} +
(000,110,103,011) for the cations and (4, ¢, §) + (000,120,40L,011) for
the anions, then in the rhombohedral distortion the single-atom position parameter g
changes from a vaiue of 0.25 in the cubic phase to ¢ = 0.25 — 6. This means that the
sublattice shifts by « = 26 along the [100] axis of the FCC lattice or by u = 2v/3§
along the body diagonal (the ¢ axis). It is caused by the softening of the zone-cantre
transverse optical (T0) phonon mode. As a result of this the inversion symmetry
is lost, double cation-anion layers are formed and spontaneous polarization occurs,
although this cannot be observed because it is screened by free carriers.

(iiy The acoustic distortion is the homogeneous rhombohedral shear strain €,
which manifests itself as a change in the inter-axial angle (2¢, = Ad = (x/2)-¢ in
radians) of the unit cell (in the rhombohedral shear strain the cubic lattice is stretched
along the rhombohedral ¢ axis and contracted in the perpendicular direction).

(iii) The dilatational strain ¢, is due to a change in the lattice constant Aa, or 2
change 6V in the specific volume [10,11,15]. The values of the above parameter for
C3, GeTe at room temperature are u = 0.034, ¢, ~ 0.15 and §V = 0.015 [1].

3.2. The band structure of IV-VI compounds in cubic and rhombohedral phases

In the narrow-gap semiconductors the inieraction between different levels involved in
the band structure is small except for those from the conduction and valence bands.
Using the kp method leads to a simple two-band Kane model [15] in which the
assumption of an ellipsoidal band structure gives an energy-momentum relaiionship

E(E + E,) = QLK% + Q2?2 ®)

where (0, and @, are the direct transverse and longitudinal valence-conduction band
interactions and the coordinate system has been taken with the =z axis parallel to the
{111} direction of the cubic crystal.

In fact, in the vicinity of the Fermi level, for example of the alloy system
Pb,__.Sn_Te, there are six levels clustered in a spread of 4 eV, while the nearest
other levels with non-zero kp matrix elements lie about 8 eV from the Fermi
level [16]. The comsequence is that a six-band model is necessary for an improved
kp calculation {17,18). Dimmock [18] showed that in the cubic phase the energy—
momentum refationship for these IV-VI compounds can be expressed as

(E— Ak} - BEI(E+ E,~ Ck, - DR = Q1% + QK2 (4

where A, B, C are the contributions from the lower indirect conduction and valence
bands, while Q, ,Q, and the coordinate system are the same as those in the Kane
model of equation (3). The energy gap, defined as E, = E(Lg;) — E(L) in the
symbols of Mitchell and Wallis [17], was taken by Dimmock [18] to vary linearly
with z across the alloy system. Band inversion is included by allowing the energy
gaps to take negative values. The result of these calculations is that there are four
equivalent valleys at the point L of the cubic Brillouin zone (BZ), which show strong
non-parabolicity. Bangert [19] considered the modifications to the Dimmock model
that were necessary to take into account the rhombohedral distortion at the structural
phase transition. The four equivalent valleys at the L points of the cubic BZ split into
a single T valley and three equivalent L valleys. The symmetry of the conduction
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Figure 2. Brillouin zone of the rhombohedral 1V~
VI compounds showing the notation for the points,
lines and planes of symmetry. The mirror piane
{og) is perpendicular to the direction of the z
axis.

Figure 1. High-temperature rock-salt struciure
(full and broken lines) and its rhombohedral
distortion (dotted lines) at the reversible cubic—
rhombohedral phase transition of GeTe and GeTe-
rich (GeTel—.(AgBiTe;): ss. Full circles—Ge, Ag
or Bi cations; open circles—TI& anions. Armrows
indicate the directions of the movements of the
atoms at the phase transition. I and I, respectively,
show the distances between the Te atoms (dp—7}
in the layer (intra-layer Te-Te distances) and
between the layers (inter-layer Te-Te distances)
in the fayered rhombohedral structure. The
rhombohedral distortion is characterized by the
changes in the inter-axial angle ¢, and the lattice
constant & and the order parameter {r}.

and the valence band states is reduced from D,; to C,, for the T points of the
rhombohedral B2 and to C, for the L points (see figure 2). The structure of the bands
in the rhombohedral phase was obtained by changing the lattice periodic potential:

V(r) = Vy(r) + V'(r) (%)

where V,(r) is the lattice potential of the cubic phase. V'(r}, of C;, symmetry,
accounted for the distortion related to the sublattice shift u. For the calculation of
the E(k} relationship at the T points, V'(r} was added to the cubic one-electron
Hamiltonian H, The resulting energy-momentum relationship for the T-point valley
was found to be

(E- AK} — Bkl 4+ nSk,)(E+ E, - CK] - Dk — nSk,) = QFK} + QK]

(6)
where n = 1 for the two ‘spin’ states (Kramers conjugate pair), A, B, C, D and
Q, are the same parameters as applied in the cubic phase while @, are different from

the corresponding Q, of equation (4) for the cubic phase, ie. Q' = @ cos(20).
For the parameters £, and 5, Bangert [19] showed that

2 __ 2 2
El= E% +4A
S =~ Qsin(26)

7

tan(20) ~2A/E, (8)
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where E is the energy gap in G, phase at the T point of the Bz, E,, is the energy
gap in the cubic phase and A is the matrix element of the lattice potential V(=)
between the conduction and valence band states. For T > T, A = (. Below T, A
is a function of temperature because of the temperature dependence of V'(r), which
results from the order parameter . The term involving S characterized the G,
distortion symmetry and was linear in k, because it originated from a breaking of
the inversion symmetry of the cubic phase. Since A is zero in the cubic phase, the
Bangert model of equation (6) can be seen to be in agreement with the Dimmock
model of equation (4) in this regime.

In order to estimate the shape of the Fermi surfaces, Bauer e a/ [11] neglected
the far-band terms in the matrix Hamiltonian. The surfaces of constant energy in
this two-band approximation consist of intersecting ellipsoids of revolution. The
centres of the ellipsoids are displaced with respect to each other by 2k, (k; =
S(E + E;) /2Q%). The E(k) relation for the T valley is shown in figure 3 for
the case of Pb,_,Ge_Te {11]. The surfaces of constant energy of Pby ¢,Sn, 3, Té for
p = 1.1 x 10'® em~? in the rhombohedral phase [20] are presented in figure 4 for
the T and L valleys. At the T point the term £S5k, has the effect of modifying the
single ellipsoid of the Dimmock model as in figure 4, yielding two surfaces—an outer
‘skin’ (T+) and an inner ‘core’ (T™) of an apple-like object. Furthermore, in the case
of the L points, a similar pair of surfaces tilted from the normal to the Bz at L (L*
and L~) is expected to be seen).

£{k) ot Tpoint (cilk,)

la) £ {meV) (b} E {meV}
130 30
\ /
20 :
/‘
v
yd
-4 -2 hke 2 b ~2-Tkdk1 2 —
ke 1108 em™Y Ky ke, 100 em™) T vailey

Figare 3. E(k) relation for the T conduction band
valley for (&) & || ¢ and (b} k L ¢ for Pb;_,Ge,Te
(E = F = 30 meV). The kp parameters used
have been determined from the magneto-optical
data J11].

Figure 4. The Fermi surface of Pbg ¢gSng.32Te for
p=1.1x10%® em~? in the rhombohedral phase.
The full curves (the + or outer surfaces) and the
broken curves (the - or inner surfaces) represent
carriers in different 'spin’ states. For the T valley
k is parallel to the rhombohedral ¢ axis, but for
the L valley k, is not normal to the face of the
Brillouin zone. A% = kI + k%, ie all surfaces
have axial symmetry about k.. The unit of k; and
L, is 10% em=1 [20].

In order to obtain the E(k) relationship for finite temperatures, Bangert [21] has
taken into account two matrix elements R, and R, neglected in his zero-temperature
calculations [19], which represent contributions from the interband electron—-phonon
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interactions. The energy—~momentum relationship in this case is given by

(E— AKS - BiZ 4 nSk, )(E+ Ey—Ck} - D2 —nSk, ) = cos(20) QL k3 + Q2K

®
where
S = Q, sin(28) n = %1 (10)
and _
1an(20) = 24 /[E — (R, + Ry)]. (11)
A is related to the optical deformation potential = by
A=Zu o (12)

with « being the relative sublattice displacement. The energy gap £, in the
rhombohedral phase at the T point is related to the energy gap in the cubic phase
E, by

gc

E2=(E, + R - R, +4a%. (13)

Comparing the dispersion relationship of the zero-temperature (equation (6)) and
the finite-temperature (equation (9)) Bangert models, three differences are apparent:

(i) Taking R; and R, into account, the k% terms (Q’,) will be temperature-
dependent at T < T, which means that the electron-phonon coupling changes not
only the band gap but also the direct band interactions (Q', ).

(i) The band gap E, will take into account not only A, the contribution from the
interband electron—optical phonon interactions (see equation (7)), but also R; and
R, the contributions from the interband acoustic coupling (see equation (13)).

(iii) S will be exactly, not approximately, equal to @, sin{(2@} (see equations (8)
and (10)).

The model can be extended to involve the case of the band inversion transition
(the position of the bands in SnTe and GeTe are inverted with respect to the bands
in PoTe) [20] if E, = E(Ly) - E(L{) and equation (13) is rewritten as

E, = (|1 Byl B Eyl + Ry — Rp)? + 45212, (14)

This model is called the modified Bangert model. :

Tt is well known that in a cubic crystal the band edge at the nth valley shifts with
strain by an amount [22]

8E, = Dle;  DE = Dy + Dya;a; (15)

where ¢;; is the strain tensor component, D, and D, are respectively the shear and
dilatation deformation potentials and the ¢; or a; are direction cosines of the angles
between the major axis of the nth valiey and the cubic axis. Using equation (15), the
band-edge shifts due to the rhombohedral shear strain (¢;; = €;; = ¢, > 0, i # J)
and the dilational strain (€,; = ¢; > 0) below T, [23,24] are given by

Ri, = (3DJ° + Dy)ey + 2D%%¢, (16)
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for the singlet (T) valley and e

RY, = (3DY° + DyF)ey ~ DV, an
for the triplet (L) vailey, where v and ¢ denote the valence and conduction bands,
respectively.

As already shown in equations (16) and (17), the shifts in the conduction and
valence band edges in the rhombohedral phase towards their pgsitions in the cubic
phase are due to the acoustic deformation potential (D, D) and the rhombohedral
strain (¢y, €;) because

AT = R} - B} = [3(D§ - D) + Dy~ Dileg + A Dy — Dy)e,  (18)
for the singlet valley, and
A' = Ry - Ry = [3(D§ - D§)+ Df — DlJeg -~ 3(Df — DY)e,  (19)

for the triplet valley.

The values of the deformation potentials D, and D, are calculated theoretically
from Ferreira [25] for P (D§ = —4.4 eV, Dy = -89 eV, Df = 8.3 eV and
DY = 10.5 ¢V} and from Rabii [26] for SnTe (D§ = —7.56 eV, DY = —4.88 eV,
D§ = 7.35eVand D} = 7.98 eV). The relative shifts in the valleys due to the optical
distortion (the relative sublattice shift ») are given by [1]

AY = ZP/E; (20)

where E7 is the average band gap and = is the optical phonon deformation potential.

If we summarize, the cubic-rhombohedral ferroelectric phase transition causes the
following changes in the band-edge structure of IV-VI semiconductors {11,24]. The
direct energy gap in the cubic phase is situated in the L points of the BZ. The surfaces
of constant energy can be approximated by ellipsoids of revolution with their main
axis oriented along the eight {111} directions. In the rhombochedral phase (below
T,) the symmetty of the four equivalent cebic L points (Dsy is reduced to three
equivalent ones with C, symmetry and one (C,;,) along the direction of the relative
sublattice displacement. The corresponding BZ is shown in figure 2. The lowering in
symmetry has three consequences for the band-edge structures.

(i) The band gap will be changed and the gaps close to the T and L points will
be different.

(ify The Fermi surfaces of each valley are distorted ellipsoids of revolution and
their effective masses and anisotropies may be different for the L and T valleys.

(iif) The T-L splitting results in a carrier redistribution among the valleys below

T,

3.3. The band structures of rhombohedral GeTe and its solid solutions

The transport coefficients in GeTe with carrier concentration 10% ¢ p g 102! cm™3
are determined from carriers in the two valence bands (vB) with different densities
of states: the band of light holes with density-of-states effective mass 1.2m, and the
band of heavy holes with density-of-states effective mass 4m; t0 Smy (my 5 the
free-electron mass). The energetic distance between these two VB is about 0.27 to
0.30 eV. At room temperature the Fermi level enters the vB of the heavy holes at
p > 7 x 102 ¢m~3 [27). Primarily the band of heavy holes was connected with the
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¥ points of the BZ [28]. In the cubic phase it consists of 12 valleys with extrema
situated on the axis [110]. For rhombohedral or orthorhombic distortions of a crystal
the T valleys are split, too. The band-edge structure model of GeTe with parabolic
extrema taking taking into account the splitting of L and I points in rhombohedral
and orthorhombic phases is given by Korzheuv [1].

As the VB structures of GeTe-AgBilk, ss have not been investigated until now,
to explain the observed temperature dependences of its transport coefficients we
supposed that, as in the analogous system GeTe-AgSbTe, [29], the rhombohedral ss
retain not only the crystal structure {13] but also the band structure of GeTe.

5
a{C3] phase [ [ ( l [ [ (3104) phose
+Qsz;zk““j ____________
=~ T TSI eyt sy S ORUUUUP. WU 15 4/ S,

0_
0.2L
2 3
TV 5K, ¥
0.6 _ _ |
wmoom M o1t off T Tof ( 1(1
01 Mo 101 0F M0 I
0.8 ofi Tie 103
1 L L . I
st

Figure 5. Germanium telluride band-edge model (300 K) with the splitiing of four
eguivalent non-parabolic L extrema and 12 parabolic £ extrema of the first Brillouin
zone of the cubic laltice in ratio 13 (L) and &:6 (T) due to the C}g-(:gv phase transition
in accordance with the results of figure 6.

Figure 5 shows the band-edge structure model of GeTe and investigated Ss taking
into account the splitting of the four equivalent non- parabo]ic L extrema and 12
parabolic ¥ extrema of the first BZ of the cubic lattice in the ratios 1:3 (L) and 6:6
(Z) due to the Oj—C3, phase transition in accordance with the experimental results
on the lattice parameters [13] (see the following explanations).

The band gap of GeR in the rhombohedral o phase, EY (see figure 5), is taken
as 0.23 eV at 300 K [28, 29] The energeuc distance of thc three L, valleys (the
subscript 4’ means the VB, ‘¢’ CB and ‘0’ uniaxial) in the rhombohedral phase down
to its position in the cubic phase is calculated from [1,30] (see also equations (16)
and (17)):

L
= § Dy ey (21)

but that of the T, valleys upwards to the conduction bands from
T=2DLe,, (22)

where DL is the deformation potential constant for the L valleys of the VB,
corresponding to uniaxial deformation of a crystal, taken equal to the value for
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GeTe, DL, = 6.8 ¢V [1]. The homogeneous thombohedral shear strain €, appears
as an order parameter (second-order transition) and is given by [1]

€y = §AS= (T, - T)/T)". @3)
Here 2 is the critical index of the order parameter and A¢ the deviation of the
rhombohedral angle from = /2 (in radians). If the cubic structure of Ge'le is retained

to 300 K, the L, valleys will be equivalent and their energetic distance to the CB top
in the rhombohedral phase will be equal to (see figure 3).

EZ 4+ AT =0.23 eV +0.1945 eV = 0.4245 eV, (24)

The energetic position of the X valley top in the hypothetical cubic phase to the CB
top in the thombohedral phase (the zero level) will be given by (see figure 5)

Eg + AT+ 6, = Ef + 2Dy, +2D5¢,
=0.23 eV - 0.1945 eV + 0.944 eV = 0.5189 ¢V, (25)

The energetic distances from the zero level of the 12 parabolic ¥, extrema of the
first BZ of the rhombohedral lattice split in the ratio 6:6 down to jts positions in the
cubic phase are calculated from (see figure 5)

)= Ef+ AT+ 6, Die,, (26)
and
T, =El +AT+6,+ Die,,. (27)

For the ternary compound AgBiTe, with cubic (Of) structure [31], the forbidden
band-gap width is determined from the temperature dependence of the electrical
conductivity (0.17 eV) and from the temperature dependence of the Hall coefficient
(0.18 eV) [32]. The position of the X, valiey of AgBiTe, is unknown. It is taken
equal to the position of the ¥, valley of the analogous ternary compound AgSbTe,,
te. X, = 0.135 eV [33] measured from the CB top (see figure 5). This seems to be
possible because the crystal structure of both compounds is of the NaCl type with
statistical distribution of the Ag and Bi (or Sb) ions on the cation sites [31] and
the value of the position of the L, valley (E,) of AgSbTe, [33] is L, = 0.18 eV
(equal to E, of AgBiTe, [32]). The position of the Fermi level is derived from the
experimenraf value of the thermoelectric power, supposing that the two-band Kane
model for narrow-gap semiconductors, especially for IV-VI compounds [15,34], is
valid and taking into account the band non-parabolicity with modified Fermi-Dirac
integrals [35]. The energetic positions of the T, valley and the three L, valleys in the
rhombohedral phase (0 € « < 0.23) are determined from the experimental results
of the ss inter-axial angle [13] using equations (22) and (23) and the deformation
potential consiant of Ge'le, = ._u , =68¢eV

The results of these calculations at 300 K are presented in figure 6. The energetic
positions of the Fermi level F (calculated from the experimental values of the
thermoelectric power S) and of the T and L levels in the Of and cgv phase are
measured from the ¢B of GeTe in the Cj, phase (zero level) which is supposed
constant with composition Z. The parameter Z = 2z /{1 4 z) gives the number of
impurity atoms (Ag and Bi) introduced into the cation sublattice. The number of Ge
atoms s 1 — Z. As can be seen, the positions of the L valleys and the Fermi level
change with composition. They will change aiso with temperature. This determines
the transport coefficient changes for ss.
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Figure 6. Interpolated band-edge structures of end  Figure 7. The temperature dependence of the

compounds (GeTe and AgBiTez) for the GeTe-
AgBiTe, system at 300 K. The splitting of L and
T valieys as a result of the cubic-rhombohedraf
phase tramsition is taken inte account. Energies
are measured from the conduction band top
in the rhombohedral phase.  The calculated

thermoelectric power S of {Gele);. - (AgBITe:)z:
(1) = =0, (2) 0.02, (3) 0.04, (4) 0.06, (5) 0.03, (6)
0.10, (7) 0.12, (8) .15, (%) 0.18, (1G) G.20. Some
of the curves (1, 6, 8 and 10) have been measured
and discussed before [7]. T is measured in K, S
in pV K-L

(from thermoelectric power S) positions of Fermi
energies are also given with triangles. Full circles,
Z; open circles, L, T

3.4. Thermoelectric power

In the case of GeRe [36] and GeR-rich ss in the systems GeRe-MnTe [37] and
GeTe-AgSbTe, [38)], the temperature dependence of S was successfully explained
by accepting that the thermoelectric power is the sum of diffusion and phonon-drag
contributions,

$=5.+5 (28)

and using the metallic expressions for 5, and S,. The diffusion term S, arises from
the diffusion of the carriers (the holes in a single-valent T band, according to the
band-edge structure of GeR and GeTe-rich ss in the rhombohedral (C3,) phase (see

figures 5 and 6)). It can be considered to be proportional to the absolute temperature
in the interval 77 to 300 K, and is given by [39]

S, = AT = b,C, = (#2kg/3e)(1/F") (29

where A and &, are coefficients, C, the electronic specific heat capacity, &g the
Boltzmann constant, F* = F/kgT the reduced Fermi energy, e the electron charge
and T the absolute temperature.

The phonon-drag term S5, has a complicated iemperature dependence. In the
temperature region T < /10 (¢ being the Debye temperature of the system) it
is given by

S, = BT? = b,C, (30)
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where b, and B are coefficients, C; is the lattice specific heat capacity, and T is the
absolute temperature. For temperatures T > /10, S; must be proportional to
the reciprocal temperature, At low temperatures the value of S, is given in a first
approximation by [40,41}:

5= (C/3ep) /(1 + (7pe/7p)] (31)

where p is the carrier density, C; the lattice specific heat, r,, the phonon—carrier
relaxation time, and 7, the phonon relaxation time for all other scattering processes.
This equation should more strictly be replaced by an integral over the complete
phonon frequency spectrum. According to the theory [41] at high temperatures-
(T > 6p) the value of C, should be constant and 7, is also independent of
temperature since the dominant scattering mechanism, anharmonic phonon-phonon
scattering, gives a relaxation time that is inversely proportional to temperature. It is
possible to conciude that S, should be inversely proportional to T in this temperature

regllc-)llznce, for T « 6p,/10 the measured thermoelectric power S should be given by
§= AT + BT (32)
and for T >» 8,/10 it should be given by
S=AT+ B'/T. (33)

As in our measurements (77 to 900 K} the temperature region 7 < 65/10 is not
reached (O of Gele being = 200 K {42}), the temperature dependence of $ must
obey equation (35), and if the phonon-drag contribution 5; of the thermoelectric
power is calculated the electronic part S5, must be separated. It must obey the
expression [34]:

S, = (kg/e)' Ly Y/ 2(F*, 8)/° Ly *(F*, B) — F”] (34)

where » LT are modified Fermi-Dyirac integrals of the type [35]
"LY(F,B) = 3””] (—g—j:—g) X™X 4+ BXH™(1+28X) + 217%2dX (35
0

B = kgT/E, is the non-parabolicity parameter, X = E/kgT, and E, is the direct
energy gap. Those integrals give an account of the influence of non-parabolicity on
the density-of-states energy dependence p( E) and dispersion law E(k) (5 is the
wavevector). The scattering index » is taken equal to —0.5 in accordance with the
basic mechanisms of carrier scattering in [V-VI compounds [41] and investigated SS,
i.e. scattering by acoustic phonons, point defects, impurity atoms and composition
fluctuations. Equation (36} allows one to determine the values of F* and F for the
investigated $s,

4. Experimental results and discussion

The experimental S{7) dependences of the investigated ailoys (z = 0, 0.02, 0.04,
0.06, 0.08, 0.10, 0.12, 0.15, 0.18 and 0.20) are presented in figure 7. As can be seen,
with increase of the amount of Ag and Bi atoms introduced in the cation sublaitice
(Z) the thermoelectric power increases in the whole temperature interval. Above



78 S K Plachkova and T [ Georgiev

=~ 200 K (6p of GeTe being about 200 K {42]) a region of [inear increase of §
exists (see the broken tangent to the temperature dependence of § of GeTe) of
width of about 100 to 200 K, which is shifted to higher temperatures with increasing
AgBiTe, content in the alloys. The reason for this may be some decrease of the
Debye temperature for solid solutions on substituting Ge atoms (atomic weight 72.5)
in the cation sublattice by heavy Ag (atomic weight 107.868) and Bi (atomic weight
208.980) atoms. At temperatures above the upper limit of that region. (~ 400 K)
a rapid increase of S is observed, which is connected with the transition into the
high-temperature cubic (Of) phase, and corresponding band changes.

If equation (35) for the temperaiure dependence of the thermoeleciric power is
obeyed in our case, then the plots of ST against 72 should yield straight lines for
T > 85/10. The results obtained from such diagrams are shown in figure 8 Good
straight lines are obtained in the temperature interval 77 K < T < 230 K, illustrating
equation (35), thus giving the values of A and B’. The derived values of A and
B’ of the investigated ss for different alloys are presented in figure 9 versus Z.
The values of the phonon-drag coefficient B’ (see equation (35)), different for every
composition, increase linearly with increasing amount of introduced impurity atoms
(Ag and Bi) replacing Ge in the cation sublattice and obey the law (see figure 9)

B ' =(tana)Z2 =CZ4+ D (36)

where « IS the angle between the straight lines and the axis of Z, C' = 14 mV/impurity
atom and D ~ Q, i.e. for GeTe B’ =~ 0, 5 ~ 0 in the temperature interval mentioned
above.
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Figure 8. The plot of ST versus T2 {llustrating  Figure 9. The variations of the coefficients 4 and
the validity of (33) in the temperature interval 100 B in equation (33) versus compeosition 2.

to about 240 K. The compositions are marked as

in figure 7.

The values of the diffusion term coefficient A (measured in xV K~?) are also
different for different alloys and increase with increasing Z. They obey the law

A =1.8922Z%+0.721Z + 0.129. (37)

If A is plotted versus the rhombohedral angle ¢ (measured at 300 K} it obeys a linear
law with the intercept from the axis of A (figure 10). The reason for this must be
the relation between the lattice strain, band structure, position of the Fermi level, the
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Figure 10. The variation of the phonon- Figure 11. Temperature dependence of 5 derived
drag coefficient A (equation (33) versus the from experimental S{T") dependence in accordance
rhombohedral angle ¢. with equation (33)): (1) z = 0, (2) 0.03, ¢3) 0.10,
(4) 0.15, (3) 0.20.

number of carriers and their density-of-states effective mass, which are different for
every composition, ie. the result of interaction berween two non-linear dependences
(A(Z) and $(Z)) is a linear one (A())}.

The values of the diffusion term S, may be derived by linear extrapolation of
S from the temperature 8 € T < 400 X (for GeTe, 6y ~ 200 K [42])} 1o low
temperatures {broken part of curve 1, figure 7)., The value of the phonon-drag
component is derived as the difference between S and the value of S, found in this
manner (S5 = S~ §,) and is presented in figure 11 versus temperature for some
compositions (x = 0, 0.05, 0.10, 0.15 and 0.20). For all investigated samples the
sign of S, is positive and the same as that of S,. This shows the predominant role of
inter-band scattering mechanisms at low temperatures in the (GeTe),__(AgBiTe,),
system as in the Ge,_,Te, [36] and (GeR),_,(AgSbTe,), systems [38].

The temperature dependence of 5 at T > 77 K is analogous to the results
for Ge,.,Te, [36] and for some GeTe-MnTe alloys [37], but we have not observed
maxima of S, at T = 18y to 16, probably because such temperatures (~ 40 to
= 28 K) are not reached in our measurements. A rapid increase of absolute value of
S, is observed, which is connected with the rapid decrease of carrier concentration
upon increasing » [6]. Such an increase is observed in Ge;_ Te, [36], GeTe-
MnTe [37] and (GeTe),_.(AgSbTe,),. [38] alloys.

The calculations show that the increase is a result of a simultaneous variation of
P, Tpe and 7, {increase of 7./, in the second term of (31) for C) constant). In
s it is possible also to observe an increase of C) due to a decrease of the Debye
temperature. The relatively small value of the scattering cross section of vacancies
(= 107 ¢m? [43)) is explained [36] by a large electron-phonon interaction in GeTe.
The increase of 5 in (Gele),__(AgBiTe,), with increasing = is possibly a result of
increasing electron—phonon interaction in the ss (decrease of T, and 7.).

In the phase tranmsition region (T = T,) with T, = 700 K for GeTe [1] and
T, ~ 420 K for ss (GeTe),g;(AgBiTe,); s [31), no anomalous changes in the
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thermoelectric power are observed. At T,.. > 7., S undergoes a maximum and
after this it decreases. The relatively high values of S at the maximum are in
agreement with the results of Bushmarina ef 4/ [6]. The value of S at the maximum
increases with increasing content of AgBiTe, in the alloys and is shifted to lower
temperatures. The first effect is connected with the decrease of carrier concentration,
observed with increasing content of AgBiTe, [5], and the second one with decreasing
temperature of the liquid and solids {3,4]. The existence of 2 region in which S
decreases with increasing temperature at T > T,,,, is evidence for the appearance of
a carrier of opposite sign, i.e. the beginning of a region of intrinsic conductivity.

The derived values of the diffusion term S.(T) in the temperature interval 77 K
< T < 380 K are presented in figure 12. The curves for all compositions are not
cut off, in the temperature interval mentioned above, i.e. the factors determining
S change slowly with composition. With increasing temperature S, deviates from
a linear law and in the region from 240 to 280 K it is proportional to T™ with
1.2 < n < 1.7 (see figure 12).
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Figure 12. Temperature dependence of S.. The compositions are marked as in figure 7.
T is measured in K, § in pV K~

To analyse the S,(T) dependences equation (30) must be used, but as it is very
general it is difficult to apply for qualitative evaluations. The expression for S, in
some special cases will now be given.

In the case of a strongly degenerate semiconductor, when the current is
determined by electrons with energies almost equal to the Fermi energy, the
thermoelectric power is given by

S.= (w*/3)(kiT/e)[8Inc( E)/OE]g_p (38)

where o{ E) is the energy dependence of the ¢lectrical conductivity. In the case of
parabolic bands and a power law of the relaxation time, ie. the case of a degenerate
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semiconductor, from (38) one obtains
S, = (#tkgf3e)(r + 3/ ksT/F (39)

which is equivalent to equation (29) at r = —0.5.
For non-degenerate semiconductors (39) transforms according to Pisarenco’s
formula,

S, = (kg/e) (r+ §) + 22 mykg TY72 ). (40)

So for a degenerate semiconductor S, is proportional to T, but for a non-degenerate
-one this dependence is weaker and changes according to a logarithmic law. It is
clear now that to analyse the S.(T) dependence of ss the degree of degeneracy
for every different alloy must be known. To reveal this, the Fermi energies are
calculated by (34) from S.(T') data (see figure 11). It was supposed also that the
transport coefficients are determined only by one type of carrier. The temperature
dependences of F, are taken equal to the dependences for Ge'Te and GeTe-ApSbTe,
ss, ie. E, = E,(0) ~ 0.00047 in eV [43]. Then the minimum gap is E, = 0.11 eV
and the possible inaccuracy in the temperature coeflicients, dE,/dT, practically will
not influence the experimental results (this is manifested by the non-parabolicity
coefficient 3).

Resuits for the Fermi energies at 300 K measured from the CB top are presented
in figure 6. At Z = 0 (GeTe) the Fermi level lies deep in the VB and the alloys
are degenerate semiconductors. With increasing Z the degeneracy decreases and the
Fermi level reaches the VB top. At Z > 0.5 it enters the forbidden band.

It should be mentioned that the method of calculating the Fermi energy described
above probably does not give the real picture because the transport coeflicients for
some compositions and in some temperature intervals are probably determined by
two types of carriers. A qualitative consideration of the Fermi-level shift in this case
will be given below.

The temperature dependences of the Fermi energy measured from the VB 1op
calculated in this manner are presented in figure 13. For the investigated alloys with
0 < Z < 0399 at low temperatures the Fermi energy is constant. This region
is nearly identical with the interval of the linear increase of the thermoelectric
power. At temperatures fower than the temperature where the thermoelectric power
deviates from the linear law, the Fermi energy appraoches the VB top, but with
increasing Z the temperature limit of this region is shifted to lower temperature
compared with GeTe (see figure 13). At finite temperatures decreasing with increasing
AgBiTe, content, the Fermi energy enters the forbidden band (at room temperature
at Z > 0.5, see figure 6).

Results for the reduced Fermi energies (figure 14) show that the compositions with
Z £ 0.214 (z = 0.12) are degenerate semiconductors (F™ > 5) at low temperatures.
The degeneracy decreases with temperature increase. The compositions with Z >
0.305 (z = 0.18), on the whole temperature interval 77 to 360 X, are in the transition
region between degenerate and non-degenerate semiconductors. This invalidated the
calculations because of the impossibility of using the approximate formulae.

The GeTe-rich ss (0 € Z £ 0.399) are characterized by a rhombohedral structure
of the crystal lattice and a corresponding band-edge structure as was described in
section 3.

In the temperature interval in which the Fermi energy lies deep in the VB
(figure 13) the alloys are highly degenerate semiconductors (F* > 5, broken line
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in figure 14). If the splitting between the light- and heavy-hole bands is bigger than
F, the Fermi level is situated in the light-hole vB, and this band is degenerate. In
this case the temperature dependences of the thermoelectric power are determined
by the light holes and are given by (39). According to this equation, if the energetic
position of F' is constant with temperature, 5, must be proportional to 7. As can
be seen from the experimental results (figures 13 and 14) this is observed in the
temperature interval between 77 and 290 to 170 K. The upper limiting temperature
of this interval is lower at bigger Z.

With increasing temperature and ternary compound content, a decrease of the
rhombohedral lattice distortion occurs. The Fermi energy moves to the vB top and
the splitting of the L and £ bands (see figure 6) decreases. The bands of light and
heavy holes approach each other. Carrier redistribution among the valleys occurs.
The Fermi level moving near the VB top aiso results from the considerably higher
heavy-hole density of states than that of the light holes. If the Fermi energy shift is
taken into account, the observed deviation of the 5(7T") dependence from the linear
law at higher temperatures may be described by

S = (S0, + 8y0,) (o, + ;) (41)

where S; and S, and o, and o, are the thermoelectric power and electrical
conductivity determined from the light and heavy holes, respectively. It is a pity
that it is impossible to use this equation as the partial concentrations and mobilities
of light and heavy holes are unknown.

It is interesting to note that the values of S, at a constant value of T(T =
100, 200, 300, 400 and 500 K) as a function of the number of Ag and Bi atoms
introduced in the cation sublattice lic on a family of straight lines (figure 15} with
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increasing slope and intercepts (cuts) with increase of temperature. The reason for
this is probably the slow change of the factor determining S at a constant temperature
with composition (or at a constant composition with temperature).

300 - g TR
500

— N0r 400 4
¢ ,
e 300

/ Figure 15. Electronic part of thermoelectric power

L . ) at a constant temperature (7" = 100, 200, 300, 400

0 0.2 0.4 and 500 K} versus the amount of the impurity Ag
Z and Bi atoms, Z, in the cation sublattice.

5. Conclusions

The thermoelectric power for GeTe-rich (GeTe),__(AgBiTe,), ss (= £ 0.20) in the
temperature interval 77 to ~ 400 K may be represented as the sum of a phonon-drag
contribution dominant at lower temperatures (T < &p ~ 200 K) and a contribution
from the degenerate hole gas dominant at higher temperatures (T > @p). The
deviations from a linear dependence at temperatures above the upper limit of that
region are connected with the tramsition to the high-temperature cubic phase and
corresponding band changes.

The existence of a region in which S decreases after it has reached a maximum
is evidence for the beginning of the intrinsic conductivity region.

Results for the reduced Fermi energies (&~ > 5) show that the compositions
with Z £ 0.214 (z £ 0.12) are degenerate semiconductors at jow temperatures. The
degeneracy decreases with & temperature increase. The compositions with Z > 0.305
(z > 0.18) on the whole temperature interval 77 to 360 K are in the transition region
berween degenerate and non-degenerate semiconductors (F™* < 5).
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